Glucose-induced microautophagy in Pichia pastoris requires the alpha-subunit of phosphofructokinase

Author:

Yuan W.1,Tuttle D.L.1,Shi Y.J.1,Ralph G.S.1,Dunn W.A.1

Affiliation:

1. Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville 32610, USA.

Abstract

We have characterized biochemically, morphologically, and genetically two distinct pathways for the selective degradation of peroxisomes in Pichia pastoris. These pathways are independently regulated and analogous to microautophagy and macroautophagy that have been defined in mammalian cells. When P. pastoris is grown in methanol, cytosolic and peroxisomal enzymes necessary for methanol assimilation are synthesized. During adaptation from methanol to glucose, these enzymes are rapidly and selectively degraded within the yeast vacuole by microautophagy. We have isolated gsa mutants that are defective in glucose-induced selective autophagy of peroxisomes. In this study, we have shown that gsa1 is unable to sequester peroxisomes into the yeast vacuole. In addition, we provide evidence that the glucose-induced selective autophagy 1 (GSA1) protein is the alpha subunit of the phosphofructokinase enzyme complex encoded by PFK1. First, we can rescue the gsa1 mutant by transformation with a vector containing PFK1. Second, cellular levels of both PFK1 mRNA and phosphofructokinase activity are dramatically reduced in gsa1 when compared to the parental GS115. Third, a PFK1 knockout (delta pfk1) is unable to degrade alcohol oxidase during glucose adaptation. As observed in gsa1, the peroxisomes in delta pfk1 remain outside the vacuole during adaptation. Our data are consistent with the concept that PFK1 protein is required for an event upstream of vacuole degradation (i.e. signaling, selection, or sequestration). However, the degradation of peroxisomes does not require a catalytically active phosphofructokinase. The inability of delta pfk1 cells to degrade alcohol oxidase can be rescued by transformation with either normal PFK1 or mutant pfk1 whose catalytic site had been inactivated by a single amino acid mutation. We propose that PFK1 protein directly modulates glucose-induced microautophagy independent of its ability to metabolize glucose intermediates.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3