Modifying sister chromatid cohesion for meiosis

Author:

Watanabe Yoshinori1

Affiliation:

1. Institute of Molecular and Cellular Biosciences, and SORST, Japan Science and Technology Agency, University of Tokyo, Yayoi 1-1-1, Tokyo 113-0032, Japan

Abstract

Meiosis produces haploid gametes from diploid cells in two stages that in many ways resemble mitosis. However, the regulatory mechanisms governing kinetochore orientation and cohesion at the first meiotic division are different from those at mitosis: sister kinetochores are pulled forwards from the same spindle pole at metaphase, and centromeric cohesion is protected throughout anaphase. Consequently, homologous chromosomes, rather than sister chromatids, segregate to the opposite sides of a cell. The residual cohesion around centromeres plays an essential role at the second meiotic division, when spindle microtubules from opposite poles attach to sister chromatids. Recent studies have identified novel meiosis-specific kinetochore proteins, such as monopolin and shugoshin, and indicate that specific modifications in sister chromatid cohesion lie at the heart of the regulation of meiotic chromosome segregation.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3