TGFβ signaling is required for sprouting lymphangiogenesis during lymphatic network development in the skin

Author:

James Jennifer M.1,Nalbandian Ani1,Mukouyama Yoh-suke1

Affiliation:

1. Laboratory of Stem Cell and Neuro-Vascular Biology, Genetics and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Building 10/6C103, 10 Center Drive, Bethesda, MD 20892, USA.

Abstract

Dermal lymphatic endothelial cells (LECs) emerge from the dorsolateral region of the cardinal veins within the anterior trunk to form an intricate, branched network of lymphatic vessels during embryogenesis. Multiple growth factors and receptors are required for specification and maintenance of LECs, but the mechanisms coordinating LEC movements and morphogenesis to develop three-dimensional lymphatic network architecture are not well understood. Here, we demonstrate in mice that precise LEC sprouting is a key process leading to stereotypical lymphatic network coverage throughout the developing skin, and that transforming growth factor β (TGFβ) signaling is required for LEC sprouting and proper lymphatic network patterning in vivo. We utilized a series of conditional mutants to ablate the TGFβ receptors Tgfbr1 (Alk5) and Tgfbr2 in LECs. To analyze lymphatic defects, we developed a novel, whole-mount embryonic skin imaging technique to visualize sprouting lymphangiogenesis and patterning at the lymphatic network level. Loss of TGFβ signaling in LECs leads to a severe reduction in local lymphangiogenic sprouting, resulting in a significant decrease in global lymphatic network branching complexity within the skin. Our results also demonstrate that TGFβ signaling negatively regulates LEC proliferation during lymphatic network formation. These data suggest a dual role for TGFβ signaling during lymphatic network morphogenesis in the skin, such that it enhances LEC sprouting and branching complexity while attenuating LEC proliferation.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference49 articles.

1. Interaction of tumor cells and lymphatic vessels in cancer progression;Alitalo;Oncogene,2012

2. Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis;Burton;Cancer Res.,2008

3. TGF-beta1 is a negative regulator of lymphatic regeneration during wound repair;Clavin;Am. J. Physiol.,2008

4. New insights into the molecular control of the lymphatic vascular system and its role in disease;Cueni;J. Invest. Dermatol.,2006

5. Lymphatic vessel activation in cancer;Das;Ann. N. Y. Acad. Sci.,2008

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3