Zmiz1 is a novel regulator of lymphatic endothelial cell gene expression and function

Author:

K. C. RajanORCID,Patel Nehal R.,Shenoy Anoushka,Scallan Joshua P.,Chiang Mark Y.,Galazo Maria J.,Meadows Stryder M.ORCID

Abstract

Zinc Finger MIZ-Type Containing 1 (Zmiz1), also known as ZIMP10 or RAI17, is a transcription cofactor and member of the Protein Inhibitor of Activated STAT (PIAS) family of proteins. Zmiz1 is critical for a variety of biological processes including vascular development. However, its role in the lymphatic vasculature is unknown. In this study, we utilized human dermal lymphatic endothelial cells (HDLECs) and an inducible, lymphatic endothelial cell (LEC)-specific Zmiz1 knockout mouse model to investigate the role of Zmiz1 in LECs. Transcriptional profiling of ZMIZ1-deficient HDLECs revealed downregulation of genes crucial for lymphatic vessel development. Additionally, our findings demonstrated that loss of Zmiz1 results in reduced expression of proliferation and migration genes in HDLECs and reduced proliferation and migration in vitro. We also presented evidence that Zmiz1 regulates Prox1 expression in vitro and in vivo by modulating chromatin accessibility at Prox1 regulatory regions. Furthermore, we observed that loss of Zmiz1 in mesenteric lymphatic vessels significantly reduced valve density. Collectively, our results highlight a novel role of Zmiz1 in LECs and as a transcriptional regulator of Prox1, shedding light on a previously unknown regulatory factor in lymphatic vascular biology.

Funder

NHLBI Division of Intramural Research

Division of Intramural Research, National Institute of Allergy and Infectious Diseases

National Institute of Neurological Disorders and Stroke

Priddy Spark Fund -Tulane University

Publisher

Public Library of Science (PLoS)

Reference69 articles.

1. The PIAS-like Coactivator Zmiz1 Is a Direct and Selective Cofactor of Notch1 in T Cell Development and Leukemia;N Pinnell;Immunity,2015

2. ZMIZ1 preferably enhances the transcriptional activity of androgen receptor with short polyglutamine tract;X Li;PLoS One,2011

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3