Larval nutrition affects life history traits in a capital breeding moth

Author:

Colasurdo Nadia1,Gélinas Yves2,Despland Emma1

Affiliation:

1. Biology Department, Concordia University, 7141 Sherbrooke W, Montreal, Quebec,Canada H4B 1R6

2. Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke W, Montreal, Quebec, Canada H4B 1R6

Abstract

SUMMARY Fitness depends not only on resource uptake but also on the allocation of these resources to various life history functions. This study explores the life-history consequences of larval diet in terms not only of larval performance but also of adult body composition and reproductive traits in the forest tent caterpillar (Malacosoma disstria Hübner). Caterpillars were reared on their preferred tree host, trembling aspen(Populus tremuloides), or on one of three artificial foods: high protein:low carbohydrate, equal protein-to-carbohydrate ratio or low protein:high carbohydrate. Survivorship, larval development rate and adult body size were lowest on the carbohydrate-biased diet and similar on the protein-biased and equal-ratio diets. Fecundity increased with body size but did not otherwise differ between diets. Moths reared on the carbohydrate-biased diet allocated a lower proportion of their mass to the ovaries and more to somatic growth whereas those on equal-ratio and protein-biased diets allocated more to reproductive tissue and less to somatic tissue. These differences in allocation to reproduction arose from differences in the size of eggs, an index of offspring quality. No differences were found in lipid and protein content of female ovaries, accessory glands or somatic tissue, or of the whole body of male moths. The findings show that physiological processes regulate the composition of the different components of the adult body. Diet effects occur as differences in overall body size and in relative allocation to these components. Although lepidopterans can, to a large extent, compensate post-ingestively for nutritionally deficient diets,investment in reproduction vs somatic growth depends on the nutrients available.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3