Leaf beetle attachment on wrinkles: isotropic friction on anisotropic surfaces

Author:

Voigt Dagmar12,Schweikart Alexandra3,Fery Andreas3,Gorb Stanislav12

Affiliation:

1. Department of Functional Morphology and Biomechanics, Zoological Institute, Christian-Albrechts-Universität zu Kiel, Am Botanischen Garten 1–9, D-24098 Kiel, Germany

2. Evolutionary Biomaterials Group, Department of Thin Films and Biological Systems, Max Planck Institute for Intelligent Systems (formerly Max Planck Institute for Metals Research), Heisenbergstraße 03, 70569 Stuttgart, Germany

3. Physical Chemistry Department II, University of Bayreuth, D-95440 Bayreuth, Germany

Abstract

SUMMARYThe influence of surface roughness on the attachment ability of insects has been repeatedly reported. In previous experiments, complex surface topographies were used as test substrates, whereas periodical structures have so far been neglected. In the present study, traction experiments with adult beetles Gastrophysa viridula and Leptinotarsa decemlineata were carried out to study the influence of surfaces, structured with periodical wrinkles, on insect attachment. Force measurements were carried out on male and female insects, both intact and after removal of claws, performing tethered walking on five polydimethylsiloxane substrates: (i) smooth, non-structured (control), (ii–v) structured with wrinkles of different wavelengths (366, 502, 911 and 25,076 nm). In two test series, beetles walked either perpendicular or parallel to the wrinkle alignment. Adults of G. viridula produced generally higher forces than those of L. decemlineata. The results show that the alignment of wrinkles had no significant influence on the force generation by beetles, probably because of the skewed position of their tarsomeres relative to the substrates. In both sexes, the highest force values were obtained on surfaces with wrinkles of 25 μm wavelength. On other wrinkled substrates, forces were significantly reduced in both males and females compared with the smooth, flat control, with the minimum force achieved on wrinkles with a wavelength of 911 nm.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference68 articles.

1. Attachment ability of the codling moth Cydia pomonella L. to rough substrates;Al Bitar;J. Insect Physiol.,2010

2. Scanning electron microscopy of epidermal surfaces of Spermatophyta;Barthlott;Trop. Subtrop. Pflanzenwelt,1977

3. Performance and adaptive value of tarsal morphology in rove beetles of the genus Stenus (Coleoptera, Staphylinidae);Betz;J. Exp. Biol.,2002

4. Nano and macro tribology of elastomers;Bistac;Tribology Letters,2005

5. Insect aquaplaning: Nepenthes pitcher plants capture prey with the peristome, a fully wettable water-lubricated anisotropic surface;Bohn;Proc. Natl. Acad. Sci. USA,2004

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3