Earthworm‐Inspired Soft Skin Crawling Robot

Author:

Tirado Jonathan1ORCID,Do Cao Danh1ORCID,Moisson de Vaux Joséphine12,Jørgensen Jonas1ORCID,Rafsanjani Ahmad1ORCID

Affiliation:

1. SDU Soft Robotics, Biorobotics Section The Maersk McKinney Moller Institute University of Southern Denmark Odense 5230 Denmark

2. Department of Mechanics École Centrale de Marseille Marseille 13013 France

Abstract

AbstractEarthworms are fascinating animals capable of crawling and burrowing through various terrains using peristaltic motion and the directional friction response of their epidermis. Anisotropic anchoring governed by tiny appendages on their skin called setae is known to enhance the earthworm's locomotion. A multi‐material fabrication technique is employed to produce soft skins with bristles inspired by the earthworm epidermis and their setae. The effect of bristles arranged in triangular and square grids at two spatial densities on the locomotion capability of a simple soft crawling robot comprised of an extending soft actuator covered by the soft skin is investigated experimentally. The results suggest that the presence of bristles results in a rostral to caudal friction ratio of µRC > 1 with some variations across bristle arrangements and applied elongations. Doubling the number of bristles increases the robot's speed by a factor of 1.78 for the triangular grid while it is less pronounced for the rectangular grid with a small factor of 1.06. Additionally, it is observed that increasing the actuation stroke for the skin with the high‐density triangular grid, from 15% to 30%, elevates the speed from 0.5 to 0.9 mm s−1, but further increases in stroke to 45% may compromise the durability of the actuators with less gains in speed (1 mm s−1). Finally, it is demonstrated that a crawling robot equipped with soft skin can traverse both a linear and a curved channel.

Funder

Syddansk Universitet

Villum Fonden

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3