DPP-mediated TGFβ signaling regulates juvenile hormone biosynthesis by activating the expression of juvenile hormone acid methyltransferase

Author:

Huang Jianhua1,Tian Ling2,Peng Cheng1,Abdou Mohamed1,Wen Di2,Wang Ying1,Li Sheng2,Wang Jian1

Affiliation:

1. Department of Entomology, University of Maryland, College Park, MD 20742, USA

2. Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China

Abstract

Juvenile hormone (JH) biosynthesis in the corpus allatum (CA) is regulated by neuropeptides and neurotransmitters produced in the brain. However, little is known about how these neural signals induce changes in JH biosynthesis. Here, we report a novel function of TGFβ signaling in transferring brain signals into transcriptional changes of JH acid methyltransferase (jhamt), a key regulatory enzyme of JH biosynthesis. A Drosophila genetic screen identified that Tkv and Mad are required for JH-mediated suppression of broad (br) expression in young larvae. Further investigation demonstrated that TGFβ signaling stimulates JH biosynthesis by upregulating jhamt expression. Moreover, dpp hypomorphic mutants also induced precocious br expression. The pupal lethality of these dpp mutants was partially rescued by an exogenous JH agonist. Finally, dpp was specifically expressed in the CA cells of ring glands, and its expression profile in the CA correlated with that of jhamt and matched JH levels in the hemolymph. Reduced dpp expression was detected in larvae mutant for Nmdar1, a CA-expressed glutamate receptor. Taken together, we conclude that the neurotransmitter glutamate promotes dpp expression in the CA, which stimulates JH biosynthesis through Tkv and Mad by upregulating jhamt transcription at the early larval stages to prevent premature metamorphosis.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3