A critical role for the nuclear protein Akirin in larval development in Henosepilachna vigintioctopunctata

Author:

Anjum Ahmad Ali1,Lin Meng‐Jiao1,Jin Lin1ORCID,Li Guo‐Qing1ORCID

Affiliation:

1. Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests/State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Department of Entomology, College of Plant Protection Nanjing Agricultural University Nanjing China

Abstract

AbstractAkirin is a nuclear protein that controls development in vertebrates and invertebrates. The function of Akirin has not been assessed in any Coleopteran insects. We found that high levels of akirin transcripts in Henosepilachna vigintioctopunctata, a serious Coleopteran potato defoliator (hereafter Hvakirin), were present at prepupal, pupal and adult stages, especially in larval foregut and fat body. RNA interference (RNAi) targeting Hvakirin impaired larval development. The Hvakirin RNAi larvae arrested development at the final larval instar stage. They remained as stunted larvae, gradually blackened and finally died. Moreover, the remodelling of gut and fat body was inhibited in the Hvakirin depleted larvae. Two layers of cuticles, old and newly formed, were noted in the dsegfp‐injected animals. In contrast, only a layer of cuticle was found in the dsakirin‐injected beetles, indicating the arrest of larval development. Furthermore, the expression of three transforming growth factor‐β cascade genes (Hvsmox, Hvmyo and Hvbabo), a 20‐hydroxyecdysone (20E) receptor gene (HvEcR) and six 20E response genes (HvHR3, HvHR4, HvE75, HvBrC, HvE93 and Hvftz‐f1) was significantly repressed, consistent with decreased 20E signalling. Conversely, the transcription of a juvenile hormone (JH) biosynthesis gene (Hvjhamt), a JH receptor gene (HvMet) and two JH response genes (HvKr‐h1 and HvHairy) was greatly enhanced. Our findings suggest a critical role of Akirin in larval development in H. vigintioctopunctata.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3