Modulation of extracellular matrix biosynthesis by bovine retinal pericytes in vitro: effects of the substratum and cell density

Author:

Canfield A.E.1,Allen T.D.1,Grant M.E.1,Schor S.L.1,Schor A.M.1

Affiliation:

1. Department of Medical Oncology, Paterson Institute, Christie Hospital and Holt Radium Institute, Manchester, UK.

Abstract

Bovine retinal pericytes plated on a two-dimensional substratum display a characteristic stellate morphology. In post-confluent cultures these cells aggregate spontaneously to form multicellular nodules. The same cells plated within a three-dimensional collagen matrix display an elongated sprouting morphology. Sprouting pericytes may be embedded within a gel either as individual cells or as multicellular aggregates. We have compared the nature of the matrix proteins synthesised by pericytes displaying these different phenotypes. Stellate pericytes cultured on plastic dishes synthesised predominantly type I collagen, some type III collagen and only traces of type IV collagen. The same collagen types were secreted when nodules had formed in postconfluent cultures on plastic, and by sprouting cells plated as single cells within the collagen gel. By contrast, sprouting pericytes plated as aggregates within the collagen gel secreted increased levels of type IV collagen and reduced amounts of type I collagen. Fibronectin was synthesized by pericytes under all experimental conditions examined; thrombospondin was produced in relatively large amounts by cells grown on plastic dishes, whereas only trace amounts could be detected in the medium when the cells were cultured within a collagen gel matrix. Transmission electron microscopy revealed that pericyte aggregates within a collagen gel contained cells in close apposition surrounded by a dense extracellular matrix. In contrast, cells in the centre of a nodule on plastic appeared to be separated from each other by loose extracellular material. These results suggest that the morphological and biosynthetic phenotypes of retinal pericytes are modulated by cell-matrix and/or cell-cell interactions.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3