Connection of pericyte–angiopoietin-Tie-2 system in diabetic retinopathy: friend or foe?

Author:

Cai Jun1,Ruan Qing2,Chen Zhi J2,Han Song3

Affiliation:

1. Department of Anatomy & Cell Biology, University of Florida, Gainesville, FL 32610, USA.

2. Department of Anatomy & Cell Biology, University of Florida, Gainesville, FL 32610, USA

3. Surgery, University of Florida, Gainesville, FL 32610, USA

Abstract

Pericytes are distinctive regulators of vascular morphologenesis and function during vascular development and homeostasis. Pericytes have recently come into focus as implications of aberrant interactions between pericytes and endothelial cells in number of pathological angiogenesis conditions, including diabetic retinopathy and tumor angiogenesis. Pericyte dropout is a hallmark of early diabetic retinopathy. Abnormal angiopoietin (Ang)-Tie-2 signaling is one principal system participating in pericyte/endothelial cell dissociation during early stages of diabetic retinopathy. Angiopoietin 2 (Ang-2) is among the relevant growth factors induced by hypoxia and plays an important role in the initiation of retinal neovascularization and cause pericyte loss. Furthermore, high levels of VEGF synergize Ang-Tie-2 signaling during the development of diabetic retinopathy. An accelerated rate of clinical development Ang-Tie-2-manipulating drugs requests a better mechanistic understanding the connection between pericytes and Ang-Tie-2 systems both under normal and disease conditions. We summarize recent advances in pericyte study in conjunction with Ang-Tie-2 signaling and also discuss possible therapeutic strategies for diabetic retinopathy by targeting pericytes through manipulating Ang-Tie-2 signaling.

Publisher

Future Science Ltd

Subject

Drug Discovery,Pharmacology,Molecular Medicine

Reference176 articles.

1. EberthC.Handbuch de lehre von der Gewegen des Menschen und der Tiere (Volume 1).W Engelman, Leipzig, Germany (1871).

2. THE FATE OF THE GIANT CELLS WHICH FORM IN THE ABSORPTION OF COAGULATED BLOOD SERUM IN THE ANTERIOR CHAMBER OF THE RABBIT'S EYE

3. Retinal Capillaries: Proliferation of Mural Cells in Vitro

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3