Recruitment in a heterogeneous population of motor neurons that innervates the depressor muscle of the crayfish walking leg muscle

Author:

Hill Andrew A. V.1,Cattaert Daniel1

Affiliation:

1. Université de Bordeaux, Centre de Neurosciences Intégratives et Cognitives (CNIC), CNRS, UMR 5228, Bâtiment B2 Biologie Animale, Avenue des Facultés, 33405 Talence Cedex,France

Abstract

SUMMARYAccording to the size principle the fine control of muscle tension depends on the orderly recruitment of motor neurons from a heterogeneous pool. We took advantage of the small number of excitatory motor neurons (about 12) that innervate the depressor muscle of the crayfish walking leg to determine if the size principle applies to this muscle. We found that in accordance with the size principle, when stimulated by proprioceptive input, neurons with small extracellular spikes were recruited before neurons with medium or large spikes. Because only a small fraction of the motor neurons responded strongly enough to sensory input to be recruited in this way, we extended our analysis to all neurons by characterizing properties that have classically been associated with recruitment order such as speed of axonal conduction and extracellular spike amplitude. Through a combination of physiological and anatomical criteria we were able to identify seven classes of excitatory depressor motor neurons. The majority of these classes responded to proprioceptive input with a resistance reflex, while a few responded with an assistance reflex, and yet others did not respond. Our results are in general agreement with the size principle. However, we found qualitative differences between neuronal classes in terms of synaptic input and neuronal structure that would in theory be unnecessary, according to a strict interpretation of the size principle. We speculate that the qualitative heterogeneity observed may be due to the fact that the depressor is a complex muscle, consisting of two muscle bundles that share a single insertion but have multiple origins.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3