Abstract
AbstractAnimals can use a common set of muscles and motor neurons (MNs) to generate diverse locomotor behaviors, but how this is accomplished remains poorly understood. Previously, we characterized the muscle activity patterns for Drosophila larval forward and backward locomotion and found that ventral oblique (VO) muscles become active earlier in backward than in forward locomotion (Zarin et al. 2019). Here, we describe how premotor circuits generate differential activation timing of VO muscles. We identify inhibitory (A06c) and excitatory (A27h) premotor neurons (PMNs) with the greatest number of synapses with VO MNs. Strikingly, A06c is a bi-modal PMN that fires before and after VO MNs in forward locomotion but fires only after MNs in backward locomotion. Further, A27h is a forward-dedicated PMN active only in forward locomotion. These two PMNs interconnect with another forward-dedicated excitatory PMN (A18b3), to create feedforward inhibitory microcircuits that define the activity window for VO MNs/muscles, producing precise VO muscle patterns underlying forward locomotion. Silencing A06c, A27h, or A18b3 PMN results in premature VO muscle activation in forward locomotion, resembling early VO activation in backward locomotion. Our results identify PMN micro-circuits that produce unique MN/muscle activity patterns to create behavior-specific motor output.
Publisher
Cold Spring Harbor Laboratory
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献