Rab22a affects the morphology and function of the endocytic pathway
Author:
Mesa Rosana1, Salomón Cristina1, Roggero Marcelo1, Stahl Philip D.2, Mayorga Luis S.1
Affiliation:
1. Laboratorio de Biología Celular y Molecular, Instituto de Histología y Embriología (IHEM-CONICET), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, 5500 Mendoza, Argentina 2. Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110, USA
Abstract
Soon after endocytosis, internalized material is sorted along different pathways in a process that requires the coordinated activity of several Rab proteins. Although abundant information is available about the subcellular distribution and function of some of the endocytosis-specific Rabs (e.g. Rab5 and Rab4), very little is known about some other members of this family of proteins. To unveil some of the properties of Rab22a, one of the less studied endosome-associated small GTPases, we have expressed the protein tagged with the green fluorescent protein in CHO cells. The results indicate that Rab22a associates with early and late endosomes (labeled by a 5 minute rhodamine-transferrin uptake and the cation-independent mannose 6-phosphate receptor, respectively) but not with lysosomes (labeled by 1 hour rhodamine horseradish peroxidase uptake followed by 1 hour chase). Overexpression of the protein causes a prominent morphological enlargement of the early and late endosomes. Two mutants were generated by site-directed mutagenesis, a negative mutant (Rab22aS19N, with reduced affinity for GTP) and a constitutively active mutant (Rab22aQ64L, with reduced endogenous GTPase activity). The distribution of the negative mutant was mostly cytosolic, whereas the positive mutant associated with early and late endosomes and, interestingly also with lysosomes and autophagosomes (labeled with monodansylcadaverine). Cells expressing Rab22a wild type and Rab22aS19N displayed decreased endocytosis of a fluid phase marker. Conversely, overexpression of Rab22aQ64L, which strongly affects the morphology of endosomes, did not inhibit bulk endocytosis. Our results show that Rab22a has a unique distribution along the endocytic pathway that is not shared by any other Rab protein, and that it strongly affects the morphology and function of endosomes.
Publisher
The Company of Biologists
Reference42 articles.
1. Barbieri, M. A., Li, G., Mayorga, L. S. and Stahl, P. D. (1996). Characterization of Rab5:Q79L-stimulated endosome fusion. Arch. Biochem. Biophys.326, 64-72. 2. Barbieri, M. A., Roberts, R. L., Gumusboga, A., Highfield, H., Alvarez-Dominguez, C., Wells, A. and Stahl, P. D. (2000). Epidermal growth factor and membrane trafficking. EGF receptor activation of endocytosis requires rab5a. J. Cell Biol.151, 539-550. 3. Biederbick, A., Kern, H. F. and Elsasser, H. P. (1995). Monodansylcadaverine (MDC) is a specific in vivo marker for autophagic vacuoles. Eur. J. Cell Biol.66, 3-14. 4. Bucci, C., Parton, R. G., Mather, I. H., Stunnenberg, H., Simons, K., Hoflack, B. and Zerial, M. (1992). The small GTPase rab5 functions as a regulatory factor in the early endocytic pathway. Cell70, 715-728. 5. Bucci, C., Thomsen, P., Nicoziani, P., McCarthy, J. and van Deurs, B. (2000). Rab7: a key to lysosome biogenesis. Mol. Biol. Cell11, 467-480.
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|