Bicarbonate stimulated phospholipid scrambling induces cholesterol redistribution and enables cholesterol depletion in the sperm plasma membrane

Author:

Flesch Frits M.12,Brouwers Jos F. H. M.1,Nievelstein Patricia F. E. M.23,Verkleij Arie J.3,van Golde Lambert M. G.1,Colenbrander Ben2,Gadella Barend M.12

Affiliation:

1. Department of Biochemistry and Cell Biology, Utrecht University, Utrecht, 3584 CM, The Netherlands

2. Department of Farm Animal Health, Graduate School of Animal Health, Utrecht University, Utrecht, 3584 CL, The Netherlands

3. Department of Molecular Cell Biology, Institute of Biomembranes, Utrecht University, Utrecht, 3584 CH, The Netherlands

Abstract

Mammalian sperm cells are activated prior to fertilization by high bicarbonate levels, which facilitate lipoprotein-mediated cholesterol efflux. The role of bicarbonate and cholesterol acceptors on the cholesterol organization in the sperm plasma membrane was tested. Bicarbonate induced an albumin-independent change in lipid architecture that was detectable by an increase in merocyanine staining (due to protein kinase A-mediated phospholipid scrambling). The response was limited to a subpopulation of viable sperm cells that were sorted from the non-responding subpopulation by flow cytometry. The responding cells had reduced cholesterol levels (30% reduction) compared with non-responding cells. The subpopulation differences were caused by variable efficiencies in epididymal maturation as judged by cell morphology. Membrane cholesterol organization was observed with filipin, which labeled the entire sperm surface of non-stimulated and non-responding cells, but labeled only the apical surface area of bicarbonate-responding cells. Addition of albumin caused cholesterol efflux, but only in bicarbonate-responding cells that exhibited virtually no filipin labeling in the sperm head area. Albumin had no effect on other lipid components, and no affinity for cholesterol in the absence of bicarbonate. Therefore, bicarbonate induces first a lateral redistribution in the low cholesterol containing spermatozoa, which in turn facilitates cholesterol extraction by albumin. A model is proposed in which phospholipid scrambling induces the formation of an apical membrane raft in the sperm head surface that enables albumin mediated efflux of cholesterol.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3