RNA anchoring in the vegetal cortex of the Xenopus oocyte

Author:

Alarcon V.B.1,Elinson R.P.1

Affiliation:

1. Dept of Zoology, University of Toronto, Toronto, Ontario, Canada, M5S 3G5. elinson@duq.edu

Abstract

The body plan of the embryo is established by a polarized source of developmental information in the oocyte. The Xenopus laevis oocyte creates polarity by anchoring mRNAs in the vegetal cortex, including Vg1 and Xwnt-11, which might function in body plan specification, and Xcat-2, which might function in germ cell development. To identify components of the RNA anchoring mechanism, we used the manually isolated vegetal cortex (IVC) to assay loss or change in spatial arrangement of mRNAs caused by disruption of cortical elements. The role of cytoskeleton in mRNA anchoring was tested by treating oocytes with inhibitors that selectively disrupted actin microfilaments and cytokeratin filaments. Treatment of oocytes with cytochalasin B caused clumping of Vg1 and Xwnt-11 as revealed by in situ hybridization of the IVC, but did not cause their release, as confirmed by RT-PCR analysis. These mRNA clumps did not match the distribution of actin microfilament clumps, but were distributed similarly to the remnant cytokeratin filaments. Treatment of oocytes with monoclonal anti-cytokeratin antibody C11 released these mRNAs from the cortex. C11 altered the texture of the cytokeratin network, but did not affect the actin meshwork. These results show that Vg1 and Xwnt-11 are retained by a cytokeratin filament-dependent mechanism, and that organization of the cytokeratin network depend on an intact actin meshwork. Colcemid did not disrupt Vg1 and Xwnt-11 retention in the IVC, so anchoring of these mRNAs are independent of microtubules. Membrane disruption in the IVC by Triton X-100 decreased Vg1 and Xwnt-11. Loss of these mRNAs was due mainly to ribonuclease activity released from membrane components. However, when ribonuclease activity was suppressed under cold temperature, a higher amount of Vg1 and Xwnt-11 was recovered in the supernatant. This result suggested that a fraction of these mRNAs required membranes to be retained in the cortex. By contrast, Xcat-2 mRNA was neither released nor degraded following treatments with cytochalasin B, C11, colcemid and Triton X-100 under cold temperature, so no cortical element could be implicated in its anchoring.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3