Allometry of maximum vertical force production during hovering flight of neotropical orchid bees (Apidae: Euglossini)

Author:

Dillon Michael E.1,Dudley Robert23

Affiliation:

1. Department of Biology, University of Washington, Seattle, WA 98195,USA

2. Department of Integrative Biology, University of California, Berkeley, CA 94720, USA

3. Smithsonian Tropical Research Institute, PO Box 2072, Balboa, Republic of Panama

Abstract

SUMMARYThe ability of orchid bees to generate vertical forces was evaluated using a load-lifting method that imposed asymptotically increasing loads during ascending flight, ultimately eliciting maximum forces while hovering. Among 11 orchid bee species varying by approximately an order of magnitude in body mass, the capacity to produce vertical forces expressed relative either to body weight or to flight muscle weight declined linearly with increased body mass. Allometric analysis of log-transformed data, by contrast, found maximum vertical force to scale isometrically with body mass, but also to exhibit a slightly negative allometry with respect to flight muscle mass. Maximum stroke amplitude at limiting loads averaged 140° and was remarkably constant among species, a result consistent with anatomical constraints of the hymenopteran thorax on wing motions. By contrast, wing-beat frequencies during maximum performance declined with increasing body mass. Repeated lifting by individual bees reduced performance only when the number of consecutive lifts exceeded 15. Variation in linear mass density of the lifted load did not systematically alter performance estimates, although measurements on one species in two consecutive years at different thermal environments yielded significant differences in estimates of maximum force production. These findings suggest an adverse scaling of vertical force production at greater body mass even if flight muscle mass scales isometrically.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3