Affiliation:
1. School of Life Sciences and Hubei Key Lab of Genetic Regulation & Integrative Biology, Central China Normal University, Wuhan 430079, China
2. Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun 130117, China
Abstract
Flexible vocal production control enables sound communication in both favorable and unfavorable conditions. The Lombard effect, which describes a rise in call amplitude with increasing ambient noise, is a widely exploited strategy by vertebrates to cope with interfering noise. In humans, the Lombard effect influences the lexical stress through differential amplitude modulation at a sub-call syllable level, which so far has not been documented in animals. Here, we bridge this knowledge gap with Hipposideros bats which produce echolocation calls consisting of two functionally well-defined units: the constant-frequency (CF) and frequency-modulated (FM) components. We show that ambient noise induced a strong, but differential, Lombard effect in the CF and FM components of the echolocation calls. We further report that the differential amplitude compensation occurred only in the spectrally overlapping noise conditions, suggesting a functional role in releasing masking. Lastly, we show that both species of bats exhibited a robust Lombard effect in the spectrally non-overlapping noise conditions, which contrast sharply with the existing evidence. Our data highlight echolocating bats as a potential mammalian model for understanding vocal production control.
Funder
Human Frontier Science Program
National Natural Science Foundation of China
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献