Effects of insect pursuit on the Doppler shift compensation in a hipposiderid bat

Author:

Ma Nina1,Xia Hangjing1,Yu Chao2ORCID,Wei Tingting1,Yin Kuiying2ORCID,Luo Jinhong1ORCID

Affiliation:

1. Institute of Evolution and Ecology, School of Life Sciences, Central China Normal University 1 , Wuhan 430079 , China

2. Nanjing Research Institute of Electronics Technology 2 , Nanjing, Jiangsu 210039 , China

Abstract

ABSTRACT Doppler shift compensation (DSC) is a unique feature observed in certain species of echolocating bats and is hypothesized to be an adaptation to detecting fluttering insects. However, current research on DSC has primarily focused on bats that are not engaged in foraging activities. In this study, we investigated the DSC performance of Pratt's roundleaf bat, Hipposideros pratti, which was trained to pursue insects in various motion states within a laboratory setting. Our study yielded three main results. First, H. pratti demonstrated highly precise DSC during insect pursuit, aligning with previous findings of other flutter-detecting foragers during orientation or landing tasks. Second, we found that the motion state of the insect prey had little effect on the DSC performance of H. pratti. Third, we observed variations in the DSC performance of H. pratti throughout the course of insect pursuit. The bats exhibited the highest DSC performance during the phase of maximum flight speed but decreased performance during the phase of insect capture. These findings of high precision overall and the time-dependent performance of DSC during insect pursuit support the hypothesis that DSC is an adaptation to detecting fluttering insects.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Special Foundation for National Science and Technology Basic Research Program of China

Publisher

The Company of Biologists

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3