Assembly pathway of the anastralDrosophilaoocyte meiosis I spindle

Author:

Sköld Helén Nilsson1,Komma Donald J.1,Endow Sharyn A.1

Affiliation:

1. Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA

Abstract

Oocyte meiotic spindles of many species are anastral and lack centrosomes to nucleate microtubules. Assembly of anastral spindles occurs by a pathway that differs from that of most mitotic spindles. Here we analyze assembly of the Drosophila oocyte meiosis I spindle and the role of the Nonclaret disjunctional (Ncd) motor in spindle assembly using wild-type and mutant Ncd fused to GFP. Unexpectedly, we observe motor-associated asters at germinal vesicle breakdown that migrate towards the condensed chromosomes, where they nucleate microtubules at the chromosomes. Newly nucleated microtubules are randomly oriented, then become organized around the bivalent chromosomes. We show that the meiotic spindle forms by lateral associations of microtubule-coated chromosomes into a bipolar spindle. Lateral interactions between microtubule-associated bivalent chromosomes may be mediated by microtubule crosslinking by the Ncd motor, based on analysis of fixed oocytes. We report here that spindle assembly occurs in an ncd mutant defective for microtubule motility, but lateral interactions between microtubule-coated chromosomes are unstable, indicating that Ncd movement along microtubules is needed to stabilize interactions between chromosomes. A more severe ncd mutant that probably lacks ATPase activity prevents formation of lateral interactions between chromosomes and causes defective microtubule elongation. Anastral Drosophila oocyte meiosis I spindle assembly thus involves motor-associated asters to nucleate microtubules and Ncd motor activity to form and stabilize interactions between microtubule-associated chromosomes during the assembly process. This is the first complete account of assembly of an anastral spindle and the specific steps that require Ncd motor activity, revealing new and unexpected features of the process.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3