Warm acclimation improves hypoxia tolerance in Fundulus heteroclitus

Author:

McBryan Tara L.1,Healy Timothy M.1,Haakons Kristen L.1,Schulte Patricia M.1

Affiliation:

1. Department of Zoology, 6270 University Blvd, University of British Columbia, Vancouver, BC, Canada V6T 1Z4

Abstract

ABSTRACT Human activities are increasing both the frequency of hypoxic episodes and the mean temperature of aquatic ecosystems, but few studies have considered the possibility that acclimation to one of these stressors could improve the ability to cope with the other stressor. Here, we used Atlantic killifish, Fundulus heteroclitus, to test this hypothesis. Hypoxia tolerance was measured as time to loss of equilibrium in hypoxia (LOEhyp) at 0.4 kPa oxygen. Time to LOEhyp declined from 73.3±6.9 min at 15°C to 2.6±3.8 min at 23°C, and at 30°C no fish could withstand this level of hypoxia. Prior acclimation to warm temperatures significantly increased time to LOEhyp. Hypoxia tolerance of the southern subspecies of killifish, F. heteroclitus heteroclitus, was greater than that of the northern subspecies, F. heteroclitus macrolepidotus, measured both as critical oxygen tension (Pcrit) and as time to LOEhyp. Warm acclimation offset the negative effects of temperature on time to LOEhyp to a similar extent in the two subspecies. Warm acclimation increased total lamellar surface area of the gill in both subspecies as a result of regression of an interlamellar cell mass (ILCM). However, differences in total lamellar surface area could not explain differences in time to LOEhyp between the subspecies, suggesting that the lower time to LOEhyp of northern fish is related to their higher routine metabolic rate. These data suggest that thermal plasticity in gill morphology can improve the capacity of this species to tolerate hypoxia, and shows how existing plasticity may help organisms to cope with the complex interacting stressors that they will encounter with increasing frequency as our climate changes.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3