Abstract
Summary
To assess the potential involvement of TORC1 (target of rapamycin complex 1) signaling in the regulation of postprandial hepatic lipid and glucose metabolism-related gene expression in trout, we employed intraperitoneal (IP) administration of rapamycin to achieve an acute inhibition of the TOR pathway. Our results reveal that rapamycin inhibits the phosphorylation of TORC1 and its downstream effectors (S6K1, S6 and 4E-BP1), without affecting Akt and the Akt substrates Forkhead-box Class O1 (FoxO1) and glycogen synthase kinase 3α/β (GSK 3α/β). These results indicate that acute administration of rapamycin in trout leads to the inhibition of TORC1 activation. No effect is observed on the expression of genes involved in gluconeogenesis, glycolysis and fatty acid oxidation, but hepatic TORC1 inhibition results in decreased sterol regulatory element binding protein 1c (SREBP1c) gene expression and suppressed fatty acid synthase (FAS) and glucokinase (GK) at gene expression and activity levels, indicating that FAS and GK activity is controlled at a transcriptional level in a TORC1-dependent manner. This study demonstrates for the first time in fish that postprandial regulation of hepatic lipogenesis and glucokinase in rainbow trout requires the activation of TORC1 signaling.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
58 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献