Starvation Affects the Muscular Morphology, Antioxidant Enzyme Activity, Expression of Lipid Metabolism-Related Genes, and Transcriptomic Profile of Javelin Goby (Synechogobius hasta)

Author:

Chen Xiangning123ORCID,Xu Yili13,Cui Xiangyu1,Zhang Siying1,Zhong Xiangqi1,Ke Juntao1,Wu Yuze1,Liu Zhiyu2,Wei Chaoqing13,Ding Zhujin13,Xu Jianhe13,Cheng Hanliang13

Affiliation:

1. Jiangsu Key Laboratory of Marine Biotechnology, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China

2. Key Laboratory of Cultivation and High-Value Utilization of Marine Organisms, Fisheries Research Institute of Fujian, Xiamen 361000, China

3. Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China

Abstract

Fish in natural and cultivated environments can be challenged by starvation. However, inducing starvation in a controlled manner cannot only reduce feed consumption but also reduces aquatic eutrophication and even improves farmed fish quality. This study investigated the effects of starvation on the muscular function, morphology, and regulatory signaling in javelin goby (Synechogobius hasta) by evaluating the biochemical, histological, antioxidant, and transcriptional changes in the musculature of S. hasta subjected to 3, 7, and 14 days fasting. The muscle glycogen and triglyceride levels in S. hasta were gradually reduced under starvation, reaching their lowest at the end of the trial ( P < 0.05 ). The levels of glutathione and superoxide dismutase were significantly elevated after 3–7 days of starvation ( P < 0.05 ), but later returned to the level of the control group. The muscle of starved S. hasta developed structural abnormalities in some areas after 7 days of food deprivation, and more vacuolation and more atrophic myofibers were observed in 14-day fasted fish. The transcript levels of stearoyl-CoA desaturase 1 (scd1), the key gene involved in the biosynthesis of monounsaturated fatty acids, were markedly lower in the groups starved for 7 or more days ( P < 0.05 ). However, the relative expressions of genes associated with lipolysis were decreased in the fasting experiment ( P < 0 .05). Similar declines in the transcriptional response to starvation were found in muscle fatp1 and ppar γ abundance ( P < 0.05 ). Furthermore, the de novo transcriptome of muscle tissue from the control, 3-day and 14-day starved S. hasta generated 79,255 unigenes. The numbers of differentially expressed genes (DEGs) identified by pairwise comparisons among three groups were 3276, 7354, and 542, respectively. The enrichment analysis revealed that the DEGs were primarily involved in metabolism-related pathways, including ribosome, TCA pathway, and pyruvate metabolism. Moreover, the qRT-PCR results of 12 DEGs validated the expression trends observed in the RNA-seq data. Taken together, these findings demonstrated the specific phenotypical and molecular responses of muscular function and morphology in starved S. hasta, which may offer preliminary reference data for optimizing operational strategies incorporating fasting/refeeding cycles in aquaculture.

Funder

Priority Academic Program Development of Jiangsu Higher Education Institutions

Publisher

Hindawi Limited

Subject

Aquatic Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3