Regulatory mechanisms of metabolic flexibility in the dark-eyed junco (Junco hyemalis)

Author:

Stager Maria1,Swanson David L.2,Cheviron Zachary A.1

Affiliation:

1. Department of Animal Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

2. Department of Biology, University of South Dakota, Vermillion, SD 57069, USA

Abstract

ABSTRACT Small temperate birds reversibly modify their aerobic performance to maintain thermoregulatory homeostasis under seasonally changing environmental conditions and these physiological adjustments may be attributable to changes in the expression of genes in the underlying regulatory networks. Here, we report the results of an experimental procedure designed to gain insight into the fundamental mechanisms of metabolic flexibility in the dark-eyed junco (Junco hyemalis). We combined genomic transcriptional profiles with measures of metabolic enzyme activities and whole-animal thermogenic performance from juncos exposed to four 6-week acclimation treatments that varied in temperature (cold, 3°C; warm, 24°C) and photoperiod (short day, 8 h light:16 h dark; long day, 16 h light:8 h dark). Cold-acclimated birds increased thermogenic capacity compared with warm-acclimated birds, and this enhanced performance was associated with upregulation of genes involved in muscle hypertrophy, angiogenesis, and lipid transport and oxidation, as well as with catabolic enzyme activities. These physiological changes occurred over ecologically relevant timescales, suggesting that birds make regulatory adjustments to interacting, hierarchical pathways in order to seasonally enhance thermogenic capacity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference63 articles.

1. Global signatures of protein and mRNA expression levels;Abreu;Mol. BioSyst.,2009

2. Metabolic and ventilatory acclimatization to cold stress in House Sparrows (Passer domesticus);Arens;Physiol. Biochem. Zool.,2005

3. Systems genetics of complex traits in Drosophila melanogaster;Ayroles;Nat. Genet.,2009

4. Exposure to cold but not exercise increases carbon turnover rates in specific tissues of a passerine;Bauchinger;J. Exp. Biol.,2010

5. Nitric oxide in adaptation to altitude;Beall;Free Radical Bio. Med.,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3