Mechanical Properties of the Octopus Aorta

Author:

Shadwick Robert E.1,Gosline John M.1

Affiliation:

1. Department of Zoology, University of British Columbia, Vancouver, B.C., Canada

Abstract

The quasi-static mechanical properties of the aorta of Octopus dofleini were investigated using biaxial inflation and uniaxial force-extension tests on vessel segments in vitro. The octopus aorta is a highly compliant and non-linearly elastic structure. The elastic modulus (i.e. the stiffness) measured circumferentially (EC) and longitudinally (EL) increased markedly with distension of the vessel wall. EC was always greater than (EL), and varied from about 104 to 2×105Nm−2 between 2 and 5 kPa pressure respectively, the approximate range of resting blood pressure in this species. Increasing vessel wall stiffness is necessary for the aorta to be compliant at low pressure, and at the same time to be protected from ‘blowout’ at high pressure. The non-linear elasticity of the octopus aorta at physiological pressures can be attributed to the properties of the rubber-like elastic fibres which are present in the vessel wall, with little contribution from stiff collagen fibres being required until very high pressures. Dynamic mechanical properties of the aorta were measured by the method of forced oscillations. The dynamic modulus in the circumferential direction increased continuously to almost twice the static value as the frequency was raised from 0.05 to 10 Hz. At the same time, the viscous damping, tan δ, increased from 0.11 to 0.27. The resilience of the octopus aorta was close to 70 % at the revant physiological frequencies. We conclude that this vessel is suitably designed to function as an efficient elastic energy storage component in the octopus circulatory system.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3