The modulus of elasticity of fibrillin-containing elastic fibres in the mesoglea of the hydromedusaPolyorchis penicillatus

Author:

Megill William M.123,Gosline John M.12,Blake Robert W.12

Affiliation:

1. Department of Zoology, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada

2. Bamfield Marine Sciences Centre, Bamfield, BC, V0R 1B0, Canada

3. Centre for Biomimetic and Natural Technologies, Mechanical Engineering Department, University of Bath, Bath, BA2 7AY, UK

Abstract

SUMMARYHydromedusan jellyfish swim by rhythmic pulsation of their mesogleal bells. A single swimming muscle contracts to create thrust by ejecting water from the subumbrellar cavity. At the end of the contraction, energy stored in the deformation of the mesogleal bell powers the refilling stage, during which water is sucked back into the subumbrellar cavity. The mesoglea is a mucopolysaccharide gel reinforced with radially oriented fibres made primarily of a protein homologous to mammalian fibrillin. Most of the energy required to power the refill stroke is thought to be stored by stretching these fibres. The elastic modulus of similar fibrillin-rich fibres has been measured in other systems and found to be in the range of 0.2 to 1.1 MPa. In this paper,we measured the diameters of the fibres, their density throughout the bell,and the mechanical behaviour of the mesoglea, both in isolated samples and in an intact bell preparation. Using this information, we calculated the stiffness of the fibres of the hydromedusa Polyorchis penicillatus,which we found to be approximately 0.9 MPa, similar in magnitude to other species. This value is two orders of magnitude more compliant than the stiffness of the component fibrillin microfibrils previously reported. We show that the structure of the radial fibres can be modelled as a parallel fibre-reinforced composite and reconcile the stiffness difference by reinterpreting the previously reported data. We separate the contributions to the bell elasticity of the fibres and mesogleal matrix and calculate the energy storage capacity of the fibres using the calculated value of their stiffness and measured densities and diameters. We conclude that there is enough energy potential in the fibres alone to account for the energy required to refill the subumbrellar cavity.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3