Mechanical Power output from Striated Muscle during Cyclic Contraction

Author:

Josephson Robert K.1

Affiliation:

1. The School of Biological Sciences, University of California, Irvine, CA 92717, U.S.A.

Abstract

1. The mechanical power output of a synchronous insect muscle was determined by measuring tension as the muscle was subjected to sinusoidal length change and stimuli which occurred at selected phases of the length cycle. The area of the loop formed by plotting muscle tension against length over a full cycle is the work done on that cycle; the work done times the cycle frequency is the mechanical power output. The muscle was a flight muscle of the tettigoniid Neoconocephalus triops. The measurements were made at the normal wing-stroke frequency for flight (25 Hz) and operating temperature (30°C). 2. The power output with a single stimulus per cycle, optimal excursion amplitude, and optimal stimulus phase was 1.52 J kg−1 cycle−1 or 37W kg−1. The maximum power output occurs at a phase such that the onset of the twitch coincides with the onset of the shortening half of the length cycle. The optimum excursion amplitude was 5.5% rest length; with greater excursion, work output declined because of decreasing muscle force associated with the more rapid shortening velocity. 3. Multiple stimulation per cycle increases the power output above that available with twitch contractions. In this muscle, the maximum mechanical power output at 25 Hz was 76 W kg−1 which was achieved with three stimuli per cycle separated by 4-ms intervals and an excursion amplitude of 6.0% rest length. 4. The maximum work output during the shortening of an isotonic twitch contraction was about the same as the work done over a full sinusoidal shortening-lengthening cycle with a single stimulus per cycle and optimum excursion amplitude and phase.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 211 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3