Tarsal taste neuron activity and proboscis extension reflex in response to sugars and amino acids in Helicoverpa armigera (Hübner)

Author:

Zhang Yun-Feng1,van Loon Joop J. A.2,Wang Chen-Zhu1

Affiliation:

1. State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, 1 Beichen West Road, Chaoyang District, Beijing, 100101, China

2. Laboratory of Entomology, Wageningen University, P.O. Box 8031, 6700 EH Wageningen, The Netherlands

Abstract

SUMMARY In adult female Helicoverpa armigera (Hübner), the fifth tarsomere of the prothoracic legs bears 14 gustatory trichoid chemosensilla. These chemosensilla were characterized through electrophysiological experiments by stimulating with sucrose, glucose, fructose, maltose, myo-inositol and 20 common amino acids. In electrophysiological recordings from nine sensilla, responses were obtained to certain compounds tested at 100 mmol l−1, and the response spectra differed from broad to narrow. The four sugars excited the same receptor neuron in sensillum a and sensillum b; sucrose and myo-inositol, sucrose and lysine, myo-inositol and lysine excited two different receptor neurons respectively in sensillum a; fructose and lysine excited two different receptor neurons in sensillum n. Furthermore, the four sugars, myo-inositol and lysine all elicited concentration-dependent electrophysiological responses. These six compounds also induced the proboscis extension reflex (PER) followed by ingestion of the solution when they were applied on the tarsi. Lysine and sucrose caused the strongest electrophysiological responses. However, sucrose had the strongest stimulatory effect on the PER whereas lysine had the weakest. Mixtures of sucrose with the other sugars or with lysine had a similar stimulatory effect on the PER as sucrose alone. The electrophysiological and behavioural responses caused by a range of sucrose concentrations were positively correlated. We conclude that the tarsal gustatory sensilla play an essential role in perceiving sugars available in floral nectar and provide chemosensory information determining feeding behaviour. Tarsal taste-receptor-neuron responses to lysine are implicated in oviposition behaviour.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference48 articles.

1. Feeding preferences of eastern spruce budworm larvae in two-choice tests with extracts of mature foliage and with pure amino acids;Albert;J. Chem. Ecol.,1988

2. Structure and distribution of tactile and bimodal taste / tactile sensilla on the ovipositor, tarsi and antennae of the flour moth, Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae);Anderson;Int. J. Insect Morphol. Embryol.,1990

3. Studies of nectar-constitution and pollinator-plant coevolution;Baker,1975

4. Chemical constituents of nectar in relation to pollination mechanisms and phylogeny;Baker,1982

5. Floral nectar sugar constituents in relation to pollinator type;Baker,1983

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3