CDK9 and its repressor LARP7 modulate cardiomyocyte proliferation and response to injury in the zebrafish heart

Author:

Matrone Gianfranco12,Wilson Kathryn S.1,Maqsood Sana1,Mullins John J.1,Tucker Carl S.1,Denvir Martin A.1

Affiliation:

1. British Heart Foundation Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, EH16 4TJ, United Kingdom

2. Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Methodist Hospital Research Institute, Houston 77030, Texas, USA

Abstract

Cyclin Dependent Kinase (CDK)9 acts via the Positive Transcription Elongation Factor-b (P-TEFb) complex to activate and expand transcription via RNA polymerase II (RNApol II). It has also been shown to regulate cardiomyocyte hypertrophy with recent evidence linking it to cardiomyocyte proliferation. We hypothesised that modification of CDK9 activity could both impair and enhance the cardiac response to injury by modifying cardiomyocyte proliferation. CDK9 expression and activity were inhibited in the zebrafish (Danio rerio) embryo. We show that dephosphorylation of the Serine2 residue on the Carboxy-Terminal domain of RNApol II (Ser2-RNApol II-CTD) is associated with impaired cardiac structure, function and cardiomyocyte proliferation and also results in impaired functional recovery following cardiac laser injury. In contrast, de-repression of CDK9 activity, by knockdown of La-related protein (LARP7) increases phosphorylation of Ser2-RNApol II-CTD and increases cardiomyocyte proliferation. LARP7 knockdown rescued the structural and functional phenotype associated with knockdown of CDK9. CDK9/LARP7-balance plays a key role in cardiomyocyte proliferation and response to injury. LARP7 represents a potentially novel therapeutic target in promoting cardiomyocyte proliferation and recovery from injury.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3