Cell cycles and clonal strings during formation of the zebrafish central nervous system

Author:

Kimmel C.B.1,Warga R.M.1,Kane D.A.1

Affiliation:

1. Institute of Neuroscience, University of Oregon, Eugene 97403.

Abstract

Cell lineage analysis of central nervous system progenitors during gastrulation and early segmentation in the zebrafish reveals consistent coupling of specific morphogenetic behaviors with particular cell cycles. Cells in single clones divide very synchronously. Cell divisions become progressively oriented, and act synergistically with oriented intercalations during the interphases of zygotic cell cycles 15 and 16 to extend a single lineage into a long, discontinuous string of cells aligned with the nascent embryonic axis. Dorsalwards convergence brings the string to the midline and, once there, cells enter division 16. This division, or sometimes the next one, and the following cell movement reorient to separate siblings across the midline. This change converts the single string into a bilateral pair of strings, one forming a part of each side of the neural tube. The stereotyped cellular behaviors appear to account for the previously reported clonal restriction in cell fate and to underlie morphogenesis of a midline organ of proper length and bilateral shape. Regulation of cellular morphogenesis could be cell-cycle dependent.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3