Vangl2 deficient zebrafish exhibit hallmarks of neural tube closure defects

Author:

MacGowan Jacalyn,Cardenas Mara,Williams Margot KossmannORCID

Abstract

AbstractNeural tube defects (NTDs) are among the most devastating and common congenital anomalies worldwide, and the ability to model these conditionsin vivois essential for identifying causative genetic and environmental factors. Although zebrafish are ideal for rapid candidate testing, their neural tubes develop primarily via a solid neural keel rather that the fold-and-fuse method employed by mammals, raising questions about their suitability as an NTD model. Here, we demonstrate that despite outward differences, zebrafish anterior neurulation closely resembles that of mammals. For the first time, we directly observe fusion of the bilateral neural folds to enclose a lumen in zebrafish embryos. The neural folds fuse by zippering between multiple distinct but contiguous closure sites. Embryos lackingvangl2, a core planar cell polarity and NTD risk gene, exhibit delayed neural fold fusion and abnormal neural groove formation, yielding distinct openings and midline bifurcations in the developing neural tube. These data provide direct evidence for fold-and-fuse neurulation in zebrafish and its disruption upon loss of an NTD risk gene, highlighting conservation of vertebrate neurulation and the utility of zebrafish for modeling NTDs.Summary statementThe anterior neural tube of zebrafish exhibits fold-and-fuse neurulation which is disrupted upon loss of Vangl2, highlighting conservation of vertebrate neurulation and the potential to model neural tube defects in zebrafish.

Publisher

Cold Spring Harbor Laboratory

Reference103 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3