Interchangeable functions of Arabidopsis PIROGI and the human WAVE complex subunit SRA1 during leaf epidermal development

Author:

Basu Dipanwita1,El-Assal Salah El-Din1,Le Jie1,Mallery Eileen L.1,Szymanski Daniel B.12

Affiliation:

1. Agronomy Department, Purdue University, Lilly Hall, 915 West State Street,West Lafayette, IN 47907-2054, USA

2. Purdue Motility Group, Purdue University, Lilly Hall, 915 West State Street,West Lafayette, IN 47907-2054, USA

Abstract

The WAVE complex is an essential regulator of actin-related protein (ARP)2/3-dependent actin filament nucleation and cell shape change in migrating cells. Although the composition of the WAVE complex is well characterized, the cellular mechanisms that control its activity and localization are not well known. The `distorted group' defines a set of Arabidopsis genes that are required to remodel the actin cytoskeleton and maintain the polarized elongation of branched, hair-like cells termed trichomes. Several loci within this group encode homologs of ARP2/3 subunits. In addition to trichome distortion, ARP2/3 subunit mutants have reduced shoot fresh weight and widespread defects in epidermal cell-cell adhesion. The precise cellular function of plant ARP2/3, and the means by which it is regulated, is not known. In this paper, we report that the `distorted group' gene PIROGI encodes a homolog of the WAVE complex subunit SRA1. The similar cell shape and actin phenotypes of pir and ARP2/3 complex subunit mutants suggest that PIROGI positively regulates ARP2/3. PIROGI directly interacts with the small GTPase ATROP2 with isoform specificity and with selectivity for active forms of the protein. PIROGI shares only 30% amino acid identity with its human homolog. However, both WAVE subunit homologs are functionally interchangeable and display identical physical interactions with RHO family GTPases and the Arabidopsishomolog of the WAVE complex subunit NAP125. These results demonstrate the utility of the `distorted group' mutants to study ARP2/3 complex functions from signaling input to cell shape output.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 119 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3