Affiliation:
1. Department of Developmental Biology, National Research Institute for Child Health and Development, 3-35-31, Taishido, Setagaya-ku, Tokyo, 154-8567, Japan
2. Department of Bacteriology, Yokohama City University School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
Abstract
Shiga toxin is a bacterial toxin consisting of A and B subunits. Generally, the essential cytotoxicity of the toxin is thought to be mediated by the A subunit, which possesses RNA cleavage activity and thus induces protein synthesis inhibition. We previously reported, however, that the binding of the Shiga toxin 1-B subunit to globotriaosyl ceramide, a functional receptor for Shiga toxin, induces intracellular signals in a manner that is dependent on glycolipid-enriched membrane domains, or lipid rafts. Although the precise role of this signaling mechanism is not known, here we report that Shiga-toxin-mediated intracellular signals induce cytoskeleton remodeling in ACHN cells derived from renal tubular epithelial carcinoma. Using confocal laser scanning microscopy, we observed that Shiga toxin 1-B treatment induces morphological changes in ACHN cells in a time-dependent manner. In addition, the morphological changes were accompanied by the redistribution of a number of proteins, including actin, ezrin, CD44, vimentin, cytokeratin, paxillin, FAK, and α- and γ-tubulins, all of which are involved in cytoskeletal organization. The transient phosphorylation of ezrin and paxillin was also observed during the course of protein redistribution. Experiments using inhibitors for a variety of kinases suggested the involvement of lipid rafts, Src family protein kinase, PI 3-kinase, and RHO-associated kinase in Shiga toxin 1-B-induced ezrin phosphorylation. Shiga toxin 1-B-induced cytoskeletal remodeling should provide an in vitro model that can be used to increase our understanding of the pathogenesis of Shiga-toxin-mediated cell injury and the role of lipid-raft-mediated cell signaling in cytoskeletal remodeling.
Publisher
The Company of Biologists
Cited by
77 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献