Ezrin oligomers are major cytoskeletal components of placental microvilli: a proposal for their involvement in cortical morphogenesis.

Author:

Berryman M1,Gary R1,Bretscher A1

Affiliation:

1. Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA.

Abstract

Ezrin is a component of the microvillus cytoskeleton of a variety of polarized epithelial cells and is believed to function as a membrane-cytoskeletal linker. In this study, we isolated microvilli from human placental syncytiotrophoblast as a model system for biochemical analysis of ezrin function. In contrast to intestinal microvilli, ezrin is a major protein component of placental microvilli, comprising approximately 5% of the total protein mass and present at about one quarter of the molar abundance of actin. Gel filtration and chemical cross-linking studies demonstrated that ezrin exists mainly in the form of noncovalent dimers and higher order oligomers in extracts of placental microvilli. A novel form of ezrin, apparently representing covalently cross-linked adducts, was present as a relatively minor constituent of placental microvilli. Both oligomers and adducts remained associated with the detergent-insoluble cytoskeleton, indicating a tight interaction with actin filaments. Moreover, stimulation of human A431 carcinoma cells with EGF induces the rapid formation of ezrin oligomers in vivo, thus identifying a signal transduction pathway involving ezrin oligomerization coincident with microvillus assembly. In addition to time course studies, experiments with tyrosine kinase and tyrosine phosphatase inhibitors revealed a correlation between the phosphorylation of ezrin on tyrosine and the onset of oligomer formation, consistent with the possibility that phosphorylation of ezrin might be required for the generation of stable oligomers. Based on these observations, a model for the assembly of cell surface structures is proposed.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3