β-catenin-mediated adhesion is required for successful preimplantation mouse embryo development

Author:

Messerschmidt Daniel12,de Vries Wilhelmine N.3,Lorthongpanich Chanchao14,Balu Sathish15,Solter Davor14,Knowles Barbara B.134ORCID

Affiliation:

1. Institute of Medical Biology, A*STAR, 8A Biomedical Grove, Immunos 06-06, 138648, Singapore

2. Institute of Molecular and Cellular Biology, A*STAR, Proteos 5-02, 138673, Singapore

3. The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA

4. Siriraj Center of Excellence for Stem Cell Research, Mahidol University, Bangkok, 10170 Thailand

5. Nanyang Polytechnic, School of Chemical and Life Sciences, 569830, Singapore

Abstract

β-catenin (CTNNB1) is integral to cell adhesion and to the canonical Wnt signaling pathway. The effects of maternal and zygotic CTNNB1 on embryogenesis have each been separately assessed, whereas the effect of its total absence has not. As the ‘traditional’ conditional Ctnnb1 knockout alleles give rise to truncated CTNNB1 fragments, we designed a new knockout allele incapable of CTNNB1 production. Mouse embryos lacking intact maternal/zygotic CTNNB1 from two knockout strains were examined in detail. Preimplantation embryos are formed, yet abnormalities in their size and shape were found throughout pre- and early postimplantation development. In the absence of the zona pellucida, embryos lacking CTNNB1 undergo fission and these separated blastomeres can become small trophoblastic vesicles, which in turn induce decidual reactions. Comparing the severity of this defective adhesion phenotype in embryos bearing the null allele with those carrying the ‘traditional’ knockout allele suggests a hypomorphic effect of the truncated CTNNB1 protein fragment, an important observation with possible impact on previous and future studies.

Funder

Agency for Science, Technology and Research

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3