The ability to survive intracellular freezing in nematodes is related to the pattern and distribution of ice formed

Author:

Raymond Méliane R.1,Wharton David A.1ORCID

Affiliation:

1. Department of Zoology, University of Otago, P.O. Box 56, Dunedin, New Zealand

Abstract

A few species of nematodes can survive extensive intracellular freezing throughout all their tissues, an event that is usually thought to be fatal to cells. How are they able to survive in this remarkable way? The pattern and distribution of ice formed, after freezing at -10°C, can be observed using freeze substitution and transmission electron microscopy, which preserves the former position of ice as white spaces. We compared the pattern and distribution of ice formed in a nematode that survives intracellular freezing well (Panagrolaimus sp. DAW1), one that survives poorly (Panagrellus redivivus) and one with intermediate levels of survival (Plectus murrayi). We also examined Panagrolaimus sp. in which the survival of freezing had been compromised by starvation. Levels of survival were as expected and the use of vital dyes indicated cellular damage in those that survived poorly (starved Panagrolaimus sp. and P. murrayi). In fed Panagrolaimus sp. the intracellular ice spaces were small and uniform, whilst in P. redivivus and starved Panagrolaimus sp. there were some large spaces that may be causing cellular damage. The pattern and distribution of ice formed was different in P. murrayi, with a greater number of individuals having no ice or only small intracellular ice spaces. Control of the size of the ice formed is thus important for the survival of intracellular freezing in nematodes.

Funder

Kelly Tarltons Antarctica New Zealand Scholarship

Fanny Evans Postgraduate Scholarship for Women

University of Otago, PBRF

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Reference33 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3