Sodium Regulation in the Freshwater Mollusc Limnaea Stagnalis (L.) (Gastropoda: Pulmonata)

Author:

GREENAWAY PETER1

Affiliation:

1. Department of Zoology, The University of Newcastle upon Tyne

Abstract

1. Sodium regulation in normal, sodium-depleted and blood-depleted snails has been investigated. 2. Limnaea stagnalis has a sodium uptake mechanism with a high affinity for sodium ions, near maximum influx occurring in external sodium concentrations of 1.5-2 mM-Na/l and half maximum influx at 0.25 mM-Na/l. 3. L. stagnalis can maintain sodium balance in media containing 0.025 mM-Na/l. Adaptation to this concentration is achieved mainly by an increased rate of sodium uptake and a fall of 37 % in blood sodium concentration, but also by a reduction of the sodium loss rate and a decrease in blood volume. 4. A loss of 23% of total body sodium is necessary to stimulate increased sodium uptake. This loss causes near maximal stimulation of the sodium uptake mechanism. 5. An experimentally induced reduction of blood volume in L. stagnalis increases sodium uptake to three times the normal level. 6. About 40% of sodium influx from artificial tap water containing 0.35 mM-Na/l into normal snails is due to an exchange component. Similar exchange components of sodium influx were also observed in sodium-depleted and blood-depleted snails in the same external sodium concentration.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3