Src-mediated phosphorylation of mammalian Abp1 (DBNL) regulates podosome rosette formation in transformed fibroblasts

Author:

Boateng Lindsy R.1,Cortesio Christa L.23,Huttenlocher Anna34

Affiliation:

1. Program in Cellular and Molecular Biology, University of Wisconsin, Madison, WI 53706, USA

2. Department of Biomolecular Chemistry, University of Wisconsin, Madison, WI 53706, USA

3. Departments of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI 53706, USA

4. Department of Pediatrics, University of Wisconsin, Madison, WI 53706, USA

Abstract

Podosomes are dynamic actin-based structures that mediate adhesion to the extracellular matrix and localize matrix degradation to facilitate cell motility and invasion. Drebrin-like protein (DBNL), which is homologous to yeast mAbp1 and is therefore known as mammalian actin-binding protein 1 (mAbp1), has been implicated in receptor-mediated endocytosis, vesicle recycling and dorsal ruffle formation. However, it is not known whether mAbp1 regulates podosome formation or cell invasion. In this study, we found that mAbp1 localizes to podosomes and is necessary for the formation of podosome rosettes in Src-transformed fibroblasts. Despite their structural similarity, mAbp1 and cortactin play distinct roles in podosome regulation. Cortactin was necessary for the formation of podosome dots, whereas mAbp1 was necessary for the formation of organized podosome rosettes in Src-transformed cells. We identified specific Src phosphorylation sites, Tyr337 and Tyr347 of mAbp1, which mediate the formation of podosome rosettes and degradation of the ECM. In contrast to dorsal ruffles, the interaction of mAbp1 with WASP-interacting protein (WIP) was not necessary for the formation of podosome rosettes. Finally, we showed that depletion of mAbp1 increased invasive cell migration, suggesting that mAbp1 differentially regulates matrix degradation and cell invasion. Collectively, our findings identify a role for mAbp1 in podosome rosette formation and cell invasion downstream of Src.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3