Regulation of mitochondria distribution by RhoA and formins

Author:

Minin Alexander A.12,Kulik Alexander V.13,Gyoeva Fatima K.1,Li Ying2,Goshima Gohta4,Gelfand Vladimir I.5

Affiliation:

1. Institute of Protein Research, Russian Academy of Sciences, Moscow 119988, Russia

2. Department of Cell and Structural Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

3. Moscow Institute of Physics and Technology, Moscow 141700, Russia

4. Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94107, USA

5. Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA

Abstract

The distribution of mitochondria is strictly controlled by the cell because of their vital role in energy supply, regulation of cytosolic Ca2+ concentration and apoptosis. We employed cultured mammalian CV-1 cells and Drosophila BG2-C2 neuronal cells with enhanced green fluorescent protein (EGFP)-tagged mitochondria to investigate the regulation of their movement and anchorage. We show here that lysophosphatidic acid (LPA) inhibits fast mitochondrial movements in CV-1 cells acting through the small GTPase RhoA. The action of RhoA is mediated by its downstream effectors: formin-homology family members mDia1 in mammalian cells and diaphanous in Drosophila. Overexpression of constitutively active mutant forms of formins leads to dramatic loss of mitochondrial motility and to their anchorage to actin microfilaments. Conversely, depletion of endogenous diaphanous protein in BG2-C2 cells by RNA interference (RNAi) stimulates the mitochondrial movement. These effects are not simply explained by increased cytoplasm viscosity resulting from an increased F-actin concentration since stimulators of Arp2/3-dependent actin polymerization and jasplakinolide do not cause inhibition. The observed effects are highly specific to mitochondria since perturbations of diaphanous or mDia1 have no effect on movement of other membrane organelles. Thus, mitochondrial movement is controlled by the small GTPase RhoA and this control is mediated by formins.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3