Affiliation:
1. Division of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
Abstract
Membrane ruffling induced by growth factor stimulation is caused by actin remodeling, which is mediated by various signaling molecules including Rac. We have shown that SWAP-70, which binds phosphatidylinositol trisphosphate, is one such molecule required for membrane ruffling in mouse kidney cells. Here, we show that SWAP-70 directly binds to F-actin. The bacterially expressed C-terminal region of SWAP-70 co-sedimented with non-muscle F-actin, suggesting direct binding of SWAP-70 to F-actin. The binding was much weaker in muscle F-actin. A truncated mutant of SWAP-70 containing only the C-terminal region readily colocalizes with F-actin, supporting this idea. Full-length SWAP-70 does not colocalize with F-actin unless cells are stimulated with growth factors, suggesting the presence of a stimuli-dependent regulatory mechanism for actin-binding activity in vivo. Overexpression of the mutant SWAP-70 lacking this binding domain inhibits the membrane ruffling induced by epidermal growth factor stimulation in COS7 cells. This dominant-negative effect is also observed in membrane ruffling induced by a dominant-active Rac, suggesting that SWAP-70 cooperates with Rac. These results suggest that the binding activity of SWAP-70 to non-muscle F-actin is required for membrane ruffling.
Publisher
The Company of Biologists
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献