SWAP70 Overexpression Protects Against Pathological Cardiac Hypertrophy in a TAK1‐Dependent Manner

Author:

Qian Qiaofeng1ORCID,Hu Fengjiao2,Yu Wenjun134,Leng Dewen134,Li Yang1,Shi Hongjie1,Deng Dawei1ORCID,Ding Kehan1,Liang Chuan134ORCID,Liu Jinping134ORCID

Affiliation:

1. Department of Cardiovascular Surgery Zhongnan Hospital of Wuhan University Wuhan China

2. Medical Science Research Centre Zhongnan Hospital of Wuhan University Wuhan China

3. Hubei Provincial Engineering Research Center of Minimally Invasive Cardiovascular Surgery Wuhan China

4. Wuhan Clinical Research Center for Minimally Invasive Treatment of Structural Heart Disease Wuhan China

Abstract

Background Pathological cardiac hypertrophy is regarded as a critical precursor and independent risk factor of heart failure, and its inhibition prevents the progression of heart failure. Switch‐associated protein 70 (SWAP70) is confirmed important in immunoregulation, cell maturation, and cell transformation. However, its role in pathological cardiac hypertrophy remains unclear. Methods and Results The effects of SWAP70 on pathological cardiac hypertrophy were investigated in Swap70 knockout mice and Swap70 overexpression/knockdown cardiomyocytes. Bioinformatic analysis combined with multiple molecular biological methodologies were adopted to elucidate the mechanisms underlying the effects of SWAP70 on pathological cardiac hypertrophy. Results showed that SWAP70 protein levels were significantly increased in failing human heart tissues, experimental transverse aortic constriction–induced mouse hypertrophic hearts, and phenylephrine‐stimulated isolated primary cardiomyocytes. Intriguingly, phenylephrine treatment decreased the lysosomal degradation of SWAP70 by disrupting the interaction of SWAP70 with granulin precursor. In vitro and in vivo experiments revealed that Swap70 knockdown/knockout accelerated the progression of pathological cardiac hypertrophy, while Swap70 overexpression restrained the cardiomyocyte hypertrophy. SWAP70 restrained the binding of transforming growth factor β‐activated kinase 1 (TAK1) and TAK1 binding protein 1, thus blocking the phosphorylation of TAK1 and downstream c‐Jun N‐terminal kinase/P38 signaling. TAK1 interacted with the N‐terminals (1–192) of SWAP70. Swap70 (193–585) overexpression failed to inhibit cardiac hypertrophy when the TAK1–SWAP70 interaction was disrupted. Either inhibiting the phosphorylation or suppressing the expression of TAK1 rescued the exaggerated cardiac hypertrophy induced by Swap70 knockdown. Conclusions SWAP70 suppressed the progression of cardiac hypertrophy, possibly by inhibiting the mitogen‐activated protein kinases signaling pathway in a TAK1‐dependent manner, and lysosomes are involved in the regulation of SWAP70 expression level.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Cardiology and Cardiovascular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3