Predicting embryonic patterning using mutual entropy fitness and in silico evolution

Author:

François Paul1,Siggia Eric D.1

Affiliation:

1. Center for studies in Physics and Biology, The Rockefeller University, 1230 York Avenue, 10065 New York, NY, USA

Abstract

During vertebrate embryogenesis, the expression of Hox genes that define anterior-posterior identity follows general rules: temporal colinearity and posterior prevalence. A mathematical measure for the quality or fitness of the embryonic pattern produced by a gene regulatory network is derived. Using this measure and in silico evolution we derive gene interaction networks for anterior-posterior (AP) patterning under two developmental paradigms. For patterning during growth (paradigm I), which is appropriate for vertebrates and short germ-band insects, the algorithm creates gene expression patterns reminiscent of Hox gene expression. The networks operate through a timer gene, the level of which measures developmental progression (a candidate is the widely conserved posterior morphogen Caudal). The timer gene provides a simple mechanism to coordinate patterning with growth rate. The timer, when expressed as a static spatial gradient, functions as a classical morphogen (paradigm II), providing a natural way to derive the AP patterning, as seen in long germ-band insects that express their Hox genes simultaneously, from the ancestral short germ-band system. Although the biochemistry of Hox regulation in higher vertebrates is complex, the actual spatiotemporal expression phenotype is not, and simple activation and repression by Hill functions suffices in our model. In silico evolution provides a quantitative demonstration that continuous positive selection can generate complex phenotypes from simple components by incremental evolution, as Darwin proposed.

Publisher

The Company of Biologists

Subject

Developmental Biology,Molecular Biology

Reference68 articles.

Cited by 60 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3