Bayesian model discovery for reverse-engineering biochemical networks from data

Author:

Jørgensen Andreas Christ SølvstenORCID,Sturrock MarcORCID,Ghosh AtiyoORCID,Shahrezaei VahidORCID

Abstract

AbstractThe reverse engineering of gene regulatory networks based on gene expression data is a challenging inference task. A related problem in computational systems biology lies in identifying signalling networks that perform particular functions, such as adaptation. Indeed, for many research questions, there is an ongoing search for efficient inference algorithms that can identify the simplest model among a larger set of related models. To this end, in this paper, we introduce SLInG, a Bayesian sparse likelihood-free inference method using Gibbs sampling. We demonstrate that SLInG can reverse engineer stochastic gene regulatory networks from single-cell data with high accuracy, outperforming state-of-the-art correlation-based methods. Furthermore, we show that SLInG can successfully identify signalling networks that execute adaptation. Sparse hierarchical Bayesian inference thus provides a versatile tool for model discovery in systems biology and beyond.

Publisher

Cold Spring Harbor Laboratory

Reference67 articles.

1. The BAyesian STellar algorithm (BASTA): a fitting tool for stellar studies, asteroseismology, exoplanets, and Galactic archaeology;MNRAS,2022

2. Amani A. Alahmadi , Jennifer A. Flegg , Davis G. Cochrane , and Jonathan M. Drovandi , Christopher C. Keith . A comparison of approximate versus exact techniques for bayesian parameter inference in nonlinear ordinary differential equation models. Royal Society open science, 2020.

3. A new gibbs sampler for bayesian lasso;Communications in Statistics - Simulation and Computation,2020

4. Slope - adaptive variable selection via convex optimization;The annals of applied statistics,2015

5. Deepmod: Deep learning for model discovery in noisy data;Journal of Computational Physics,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3