Aquatic turning performance by the whirligig beetle: constraints on maneuverability by a rigid biological system

Author:

Fish Frank E.1,Nicastro Anthony J.2

Affiliation:

1. Department of Biology, West Chester University, West Chester, PA 19383,USA

2. Department of Physics, West Chester University, West Chester, PA 19383,USA

Abstract

SUMMARYTurning performance is constrained by morphology, where the flexibility of the body and the mobility and position of the control surfaces determine the level of performance. The use of paddling appendages in conjunction with the rigid bodies of aquatic arthropods could potentially limit their turning performance. Whirligig beetles (Coleoptera: Gyrinidae) are rigid-bodied, but these aquatic insects can swim rapidly in circular patterns. Turning performance of swimming whirligig beetles (Dineutes horni) was assessed by videotaping beetles in a small (115 mm diameter) arena at 500 frames s–1 and 1000 frames s–1. Curved trajectories were executed as continuous powered turns. Asymmetrical paddling of the outboard legs was used to power the turn. Turns were produced also by abduction of the inboard elytra and vectored thrust generated from sculling of the wing at 47.14 Hz. The abducted elytra increased drag and acted as a pivot. Swimming speeds varied from 0.06 m s–1 to 0.55 m s–1 (4.7–44.5 L s–1). Relative minimum radius was 24%of body length. Maximum rate of turn was 4428 degrees s–1 with maximum centripetal acceleration of 2.86 g. Turning radius was weakly associated with swimming velocity,although minimum values of the radius showed no correlation with velocity. Turning rate was also related indirectly to radius and directly to centripetal acceleration. Compared to vertebrates with flexible bodies, the relative turning radius of whirligig beetles is constrained by a rigid body and use of drag-based propulsive mechanisms. However, these mechanisms permit continuous turning, and the size of the beetle permits higher turn rates with lower centripetal accelerations.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 85 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3