Hydrodynamics of swimming in the water boatman, Cenocorixa bifida

Author:

Blake R. W.

Abstract

Locomotion of a small water boatman (Cenocorixa bifida, Corixidae) was investigated employing high-speed cinematography and hydromechanical modelling based on a blade-element approach. The animal is propelled by the synchronous rowing action of its hind legs. The propulsive cycle consists of a power stroke and a recovery stroke phase. Force, impulse, power, and hydromechanical efficiency were calculated for a representative power stroke during which the mean body velocity was about 8 cms−1. A distinction is made between quasi-steady resistive and unsteady inertial (added mass) forces. The mean and maximum resistive thrust forces were calculated to be about 2.4 × 10−5 and 5.7 × 10−5 N per limb, respectively. By equating the total impulse of the power stroke for both legs (2.4 × 10−6 N s) with that of the drag force acting on the body over the same period, a drag coefficient of approximately 1.07 is inferred for the body. This value is comparable to those obtained for certain insects that operate at similar Reynolds numbers to C. bifida. The unsteady added mass force that acts in the forward direction is positive (propulsive) over most of the stroke with a mean value of about 1.17 × 10−5 N per limb, corresponding to an impulse of approximately 5.9 × 10−7Ns. The total propulsive mean force and impulse acting in the forward direction amount to about 3.6 × 10−5N and 1.8 × 10−6N s per limb, respectively, so the impulse of the forwardly directed added mass force amounts to about half that of the resistive thrust force. The total work and mean power associated with generating the resistive thrust were calculated to be about 6.7 × 10−7 J and 1.33 × 10−5 W per limb, respectively. Dividing the mean body drag power (1.4 × 10−5 W) by the total mean resistive power from both legs gave a hydromechanical efficiency of 0.52. When the mean inertial power associated with moving the body (2.3 × 10−6 W) and the added mass power required to accelerate and decelerate the legs (1.95 × 10−5 W per limb) are taken into account, the power stroke propulsive efficiency falls to 0.42. Taking the energy required to power the recovery stroke into account gives an overall propulsive cycle efficiency of about 0.40. This value is about twice that calculated in a previous study for drag-based pectoral fin rowing in the angelfish and reasons for this are suggested.

Publisher

Canadian Science Publishing

Subject

Animal Science and Zoology,Ecology, Evolution, Behavior and Systematics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3