Cdc42- and Rac1-mediated endothelial lumen formation requires Pak2, Pak4 and Par3, and PKC-dependent signaling

Author:

Koh Wonshill1,Mahan Rachel D.1,Davis George E.12

Affiliation:

1. Department of Medical Pharmacology and Physiology, School of Medicine, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65212, USA

2. Department of Pathology and Anatomical Sciences, School of Medicine, Dalton Cardiovascular Research Center, University of Missouri-Columbia, Columbia, MO 65212, USA

Abstract

Rho GTPases regulate a diverse spectrum of cellular functions involved in vascular morphogenesis. Here, we show that Cdc42 and Rac1 play a key role in endothelial cell (EC) lumen and tube formation as well as in EC invasion in three-dimensional (3D) collagen matrices and that their regulation is mediated by various downstream effectors, including Pak2, Pak4, Par3 and Par6. RNAi-mediated or dominant-negative suppression of Pak2 or Pak4, two major regulators of cytoskeletal signaling downstream of Cdc42 or Rac1, markedly inhibits EC lumen and tube formation. Both Pak2 and Pak4 phosphorylation strongly correlate with the lumen formation process in a manner that depends on protein kinase C (PKC)-mediated signaling. We identify PKCϵ and PKCζ as regulators of EC lumenogenesis in 3D collagen matrices. Two polarity proteins, Par3 and Par6, are also required for EC lumen and tube formation, as they establish EC polarity through their association with Cdc42 and atypical PKC. In our model, disruption of any member in the Cdc42-Par3-Par6-PKCζ polarity complex impairs EC lumen and tube formation in 3D collagen matrices. This work reveals novel regulators that control the signaling events mediating the crucial lumen formation step in vascular morphogenesis.

Publisher

The Company of Biologists

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3