SH2 domain protein E and ABL signaling regulate blood vessel size

Author:

Schumacher Jennifer A.,Wright Zoë A.,Rufin Florat Diandra,Anand Surendra K.,Dasyani Manish,Batta Surya Prakash Rao,Laverde ValentinaORCID,Ferrari KaitlinORCID,Klimkaite LauritaORCID,Bredemeier Nina O.,Gurung Suman,Koller Gretchen M.ORCID,Aguera Kalia N.ORCID,Chadwick Griffin P.,Johnson Riley D.,Davis George E.ORCID,Sumanas SauliusORCID

Abstract

Blood vessels in different vascular beds vary in size, which is essential for their function and fluid flow along the vascular network. Molecular mechanisms involved in the formation of a vascular lumen of appropriate size, or tubulogenesis, are still only partially understood. Src homology 2 domain containing E (She) protein was previously identified in a screen for proteins that interact with Abelson (Abl)-kinase. However, its biological role has remained unknown. Here we demonstrate that She and Abl signaling regulate vessel size in zebrafish embryos and human endothelial cell culture. Zebrafish she mutants displayed increased endothelial cell number and enlarged lumen size of the dorsal aorta (DA) and defects in blood flow, eventually leading to the DA collapse. Vascular endothelial specific overexpression of she resulted in a reduced diameter of the DA, which correlated with the reduced arterial cell number and lower endothelial cell proliferation. Chemical inhibition of Abl signaling in zebrafish embryos caused a similar reduction in the DA diameter and alleviated the she mutant phenotype, suggesting that She acts as a negative regulator of Abl signaling. Enlargement of the DA size in she mutants correlated with an increased endothelial expression of claudin 5a (cldn5a), which encodes a protein enriched in tight junctions. Inhibition of cldn5a expression partially rescued the enlarged DA in she mutants, suggesting that She regulates DA size, in part, by promoting cldn5a expression. SHE knockdown in human endothelial umbilical vein cells resulted in a similar increase in the diameter of vascular tubes, and also increased phosphorylation of a known ABL downstream effector CRKL. These results argue that SHE functions as an evolutionarily conserved inhibitor of ABL signaling and regulates vessel and lumen size during vascular tubulogenesis.

Funder

National Institutes of Health

Cincinnati Children’s Research Foundation

Publisher

Public Library of Science (PLoS)

Subject

Cancer Research,Genetics (clinical),Genetics,Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3