Affiliation:
1. Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA
2. Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
Abstract
SUMMARY
Odor detection in vertebrates occurs when odorants enter the nose and bind to molecular olfactory receptors on the cilia or microvilli of olfactory receptor neurons (ORNs). Several vertebrate groups possess multiple, morphologically distinct types of ORNs. In teleost fishes, these different ORN types detect specific classes of biologically relevant odorants, such as amino acids, nucleotides and bile salts. For example, bile salts are reported to be detected exclusively by ciliated ORNs. The olfactory epithelium of elasmobranch fishes (sharks, rays and skates) is comprised of microvillous and crypt ORNs, but lacks ciliated ORNs; thus, it was questioned whether the olfactory system of this group of fishes is capable of detecting bile salts. The present investigation clearly indicates that the olfactory system of representative shark and stingray species does detect and respond to bile salts. Additionally, these species detect glycine-conjugated, taurine-conjugated and non-conjugated bile salts, as do teleosts. These elasmobranchs are less sensitive to the tested bile salts than reported for both agnathans and teleosts, but this may be due to the particular bile salts selected in this study, as elasmobranch-produced bile salts are commercially unavailable. Cross-adaptation experiments indicate further that the responses to bile salts are independent of those to amino acids, a major class of odorant molecules for all tested fishes.
Publisher
The Company of Biologists
Subject
Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献