Analysis of Na+, Cl-, K+, H+and NH4+ concentration gradients adjacent to the surface of anal papillae of the mosquitoAedes aegypti: application of self-referencing ion-selective microelectrodes

Author:

Donini Andrew1,O'Donnell Michael J.1

Affiliation:

1. Department of Biology, McMaster University, Life Sciences Building,1280 Main Street West, Hamilton, Ontario, Canada, L8S 4K1

Abstract

SUMMARYIon concentration gradients adjacent to the surface of the anal papillae of larvae of the mosquito Aedes aegypti were measured using self-referencing ion-selective microelectrodes. The gradients were used to calculate estimates of ion fluxes into and out of the papillae. There was a net influx of Na+, Cl- and K+ from the bathing medium and a net efflux of acid and NH4+. No Ca2+ gradients were detectable. Na+ and Cl-influx occurred against a concentration gradient suggesting active transport. Although Na+, Cl- and NH4+gradients were uniform along the length of the papillae, the proximal regions of the papillae in vivo revealed significantly higher H+and K+ gradients compared with distal regions. The calculated ion fluxes at the papillae are sufficient for complete Na+,K+ and Cl- haemolymph replacement in ∼4 h with external ion concentrations of 5 mmol l-1. Ion gradients were also detected adjacent to the surface of isolated papillae; however, Na+and H+ gradients were higher, and Cl- gradients were lower relative to papillae in vivo. The results support previous findings that the anal papillae of mosquito larvae are important structures for ion regulation, and suggest that these structures may be used for the excretion of nitrogenous waste.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 128 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3