An Aplysia cell adhesion molecule associated with site-directed actin filament assembly in neuronal growth cones

Author:

Thompson C.1,Lin C.H.1,Forscher P.1

Affiliation:

1. Department of Cell Biology, Yale University, New Haven CT 06510, USA.

Abstract

During neuronal growth cone-target interactions, a programmed sequence of cytoskeletal remodeling has been described, involving increased actin assembly at the target site and directed microtubule extension into it. The cell adhesion protein apCAM rapidly accumulates at such interaction sites, suggesting a possible role in regulating cytoskeletal remodeling. To test this hypothesis we crosslinked apCAM to varying degrees with antibodies. Secondary immunocomplexes exhibited a classical patching and capping response; in contrast, high density crosslinking of apCAM by antibody coated beads triggered localized actin assembly accompanied by formation of tail-like actin structures referred to as inductopodia. When beads were derivatized with increasing amounts of anti-apCAM they displayed three sequential dose-dependent kinetic states after binding: (1) lateral diffusion in the plane of the membrane; (2) restricted diffusion due to coupling with underlying F-actin; and (3) translocation in the plane of the membrane driven by de novo actin filament assembly local to bead binding sites, i.e. inductopodia formation. In contrast, lectin coated beads were far less efficient in triggering inductopodia formation despite demonstrated membrane protein binding. This work provides evidence that crosslinking of a diffusable membrane protein, apCAM, to threshold levels, can trigger highly localized actin filament assembly and rapid remodeling of neuronal cytoarchitecture.

Publisher

The Company of Biologists

Subject

Cell Biology

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3